Birzeit University-Faculty Of Engineering
 Electrical Engineering Department Control systems I -EE4302
 MATLAB _Assignment I

Inst.: Jamal Siam
$1^{\text {st }}$ semester 2015

$\underline{\operatorname{ABET}(K)}$

Question I:

Generate and plot the following signals using MATLAB:

1. $\mathrm{X} 1(\mathrm{t})=\mathrm{u}(\mathrm{t}-4)-\mathrm{u}(\mathrm{t}-7)$
2. A finite pulse $(\pi(\mathrm{t}))$ with value $=4$ and extension between 3 and 7
3. $\mathrm{X}_{2}(\mathrm{t})=\mathrm{u}(\mathrm{t}-4)+\mathrm{r}(\mathrm{t}-6)-2 \mathrm{r}(\mathrm{t}-9)+\mathrm{r}(\mathrm{t}-11)$ in the time interval [015]

Question II:

1. Generate and plot the signals $\mathrm{y} 1(\mathrm{t})=\sin 200 \pi(\mathrm{t}) \mathrm{y} 2(\mathrm{t})=\cos 750 \pi \mathrm{t}$, then determine y 1 and plot the signals $m(t)=+y 2$ and $n(t)=y 1-y 2$
2. Determine, using the MATLAB plots, if the sum and/or difference signals are periodic. In case a signal is periodic, determine its fundamental frequency.)

Question III:

Write the programs that solve the following differential equations using zero initial conditions.

1. $10 \frac{\mathrm{dy}(\mathrm{t})}{\mathrm{dt}}+20 \mathrm{y}(\mathrm{t})=10$
2. $\frac{d^{2} y(t)}{d t^{2}}+2 \frac{d y}{d t}+4 y(t)=5 \cos 1000 t$

Question IV:

Write the programs that determine the response of the linear time invariant system to the given input and the given initial conditions:

1. $\frac{\mathrm{dy}(\mathrm{t})}{\mathrm{dt}}+5 \mathrm{y}(\mathrm{t})=10 \mathrm{u}(\mathrm{t}) \quad y(0)=3$;
2. $\frac{d^{2} y(t)}{d t^{2}}+2 \frac{d y}{d t}+2 y(t)=5 \cos 2000 t \quad\left(y(0)=1, y^{\prime}(0)=2\right)$;

Question V:

Use Simulink (MATLAB) to simulate the following systems then show and plot the step response of the system.

1. $4 \frac{d^{4} y(t)}{d t^{4}}+6 \frac{d y(t)}{d t}+8 y(t)=7 \frac{d^{2} x(t)}{d t^{2}}+12 x(t)$
2. $H(s)=\frac{100(s+3)}{(s+1) *(s+4)}+\frac{10}{(s+10)} \quad$ (Hint: transform to differential equation form)

Question VI:

Write a program that computes and plots the spectral representation of the function

1. $y(t)=\left(10 e^{-10 t}\right) \mathrm{u}(\mathrm{t})$
2. $y(t)=\left(10 e^{-10 t} \cos 100 t\right) u(t)$

Question VII:

Write a program that computes the Laplace transform of the function
3. $y(t)=\left(10-10 e^{-5 t}\right) \mathrm{u}(\mathrm{t})$
4. $y(t)=\left(30-10 e^{-8 t} \cos 100 t\right) \mathrm{u}(\mathrm{t})$

Question VIII:

Write a program that define the transfer functions and plots the zero-pole map of the systems

1. with poles $(-1,-3)$ and zero (-6)
2. with poles $(-1,1+2 \mathrm{j}$ and $1-2 \mathrm{j})$ and zero at (-3)

Question IX:

Write a program that determine the inverse Laplace transform of the transfer functions in VIII.

