Birzeit University-Faculty Of Engineering Electrical Engineering Department Control systems I -EE4302 MATLAB Assignment I

Inst.: Jamal Siam

1st semester 2015

ABET (K)

Question I:

Generate and plot the following signals using MATLAB:

- 1. X1(t) = u(t-4) u(t-7)
- 2. A finite pulse $(\pi(t))$ with value = 4 and extension between 3 and 7
- 3. $X_2(t) = u(t-4) + r(t-6) 2r(t-9) + r(t-11)$ in the time interval [0 15]

Question II:

- 1. Generate and plot the signals $y_1(t) = \sin 200\pi(t) \quad y_2(t) = \cos 750\pi t$, then determine y1 and plot the signals m(t) = +y2 and n(t) = y1-y2
- 2. Determine, using the MATLAB plots, if the sum and/or difference signals are periodic. In case a signal is periodic, determine its fundamental frequency.)

Question III:

Write the programs that solve the following differential equations using zero initial conditions.

- 1. $10\frac{dy(t)}{dt} + 20y(t) = 10$
- 2. $\frac{d^2y(t)}{dt^2} + 2\frac{dy}{dt} + 4y(t) = 5\cos 1000t$

Question IV:

Write the programs that determine the response of the linear time invariant system to the given input and the given initial conditions:

1. $\frac{dy(t)}{dt} + 5y(t) = 10u(t)$ y(0) = 3;

2.
$$\frac{d^2y(t)}{dt^2} + 2\frac{dy}{dt} + 2y(t) = 5\cos 2000t$$
 (y(0) =1, y'(0)=2);
Question V:

Use Simulink (MATLAB) to simulate the following systems then show and plot the step response of the system.

1. $4\frac{d^4y(t)}{dt^4} + 6\frac{dy(t)}{dt} + 8y(t) = 7\frac{d^2x(t)}{dt^2} + 12x(t)$ rm)

2.
$$H(s) = \frac{100(s+5)}{(s+1)*(s+4)} + \frac{10}{(s+10)}$$
 (Hint: transform to differential equation fo
Ouestion VI:

Write a program that computes and plots the spectral representation of the function 1. $y(t) = (10e^{-10t})u(t)$

2. $y(t) = (10e^{-10t} \cos 100t)u(t)$

Question VII:

Write a program that computes the Laplace transform of the function

- 3. $y(t) = (10 10e^{-5t})u(t)$
- 4. $y(t) = (30 10e^{-8t} \cos 100t)u(t)$

Question VIII:

Write a program that define the transfer functions and plots the zero-pole map of the systems

- 1. with poles (-1,-3) and zero (-6)
- 2. with poles (-1, 1+2j and 1-2j) and zero at (-3)

Question IX:

Write a program that determine the inverse Laplace transform of the transfer functions in VIII.